School of Engineering

Programme Curriculum

BACHELOR OF TECHNOLOGY

PATTERN 2021

Aerospace Engineering

Faculty of Engineering

SCHOOL OF ENGINEERING, PUNE

STRUCTURE & SYLLABUS

FOR

Bachelor of Technology

Aerospace Engineering

UNDER FACULTY OF ENGINEERING

4 Year Undergraduate Programme Sanctioned by AC & BoS

(Pattern 2021 w.e.f. 2021-2022)

(160 Credits)

Department of Aerospace Engineering

MIT- Art Design & Technology University MIT School of Engineering Department of Aerospace Engineering

VISION

To be a premier center of excellence in Aerospace Engineering education that generates professionals for successful careers at national and international levels in the aerospace industry and research organizations.

MISSION

To create dynamic Aerospace Engineering professionals to meet global technological challenges through research and innovation for the benefit of society.

Program Educational Objectives (PEO'S) - Aerospace Engineering:

A graduate of MIT ADT University in Aerospace Engineering discipline should have a successful career in Aerospace Engineering or a related field, and within three to five years should attain the following:

PEO –I: Preparation & Learning Environment

To prepare and provide students with an academic environment for students to excel in postgraduate programs or to succeed in industry / technical profession and the life-long learning needed for a successful professional career in Aerospace Engineering and related fields.

PEO –II: Core Competence

To provide students with a solid foundation in mathematical, scientific and engineering fundamentals required to solve engineering problems and also to pursue higher studies.

PEO –III: Breadth

To train students with good scientific and engineering breadth so as to comprehend, analyze, design, and create novel products and solutions for real-life problems.

PEO –IV: Professionalism

To inculcate in students professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate engineering issues to broader social context.

Graduate Attributes (GA)

- 1. Engineering Knowledge
- 2. Problem Analysis
- 3. Design / Development of Solutions
- 4. Conduct Investigation of Complex Problems
- 5. Modern Tool Usage
- 6. The Engineer and Society
- 7. Environment and Sustainability
- 8. Ethics
- 9. Individual and Team Work
- 10. Communication
- 11. Project Management and Finance
- 12. Life Long Learning

Program Outcomes (PO)

Engineering Graduate Will be able to:

- 1. PO1 Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. PO2 **Problem Analysis:** Identity, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using the first principles of mathematics, natural sciences, and engineering sciences.
- 3. PO3 **Design/Development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. PO4 **Conduct Investigations of Complex Problems**: Use research-based knowledge and research methods including design of experiments, analysis, and Interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. PO5 **Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. PO6 **The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. PO7 **Environment and Sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. PO8 **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. PO9 **Individual and Team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. PO11 **Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own Work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. PO12 Life-Long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of Technological change.

Program Specific Outcomes (PSO's) - B. Tech Aerospace Engineering

The programme is expected to deliver at the time of graduation,

- 1. PSO1: Ability to identify, formulate and solve engineering problems with the potential to design aerospace systems, components, or processes, to meet desired needs within socio- economic and ethical values.
- 2. PSO2: Ability to use the techniques, skills, and modern engineering tools necessary for aerospace engineering practices.

Course Structure for B. Tech. Aerospace Engineering First Year B. Tech (2021 Batch) Semester I

Sr. No.	Course Code	Course Name	L	Т	Р	Credits	Total Marks
1	21BTAS101	Linear Algebra and Calculus	3	1	0	4	100
2	21BTAS102	Applied Sciences	4	0	2	5	150
3	21BTCS103	Programming for Problem Solving	2	0	4	4	150
4	21BTAE107	Thermodynamics	2	0	0	2	50
5	21BTAS104	English Communication for Engineers	2	0	2	3	100
6	21BTAE151	Workshop Practice	0	0	4	Audit	-
7	21BTME105	Design Thinking Part I	2	0	2	3	100
8	21SHD001	SHD (Health Practice 1)	0	0	2	1	-
		Total	15	1	16	22	650

Semester II

Sr. No.	Course Code	Subject (Semester II)		Т	Р	Credits	Total Marks
1	21BTAS201	Ordinary Differential Equations and Advanced Calculus	3	1	0	4	100
2	21BTEC202	Basics of Electrical and Electronics Engineering	3	0	2	4	150
3	21BTME203	Engineering Graphics	1	0	4	3	100
4	21BTAE202	Engineering Mechanics	3	0	0	0	100
5	21BTCS204	Object Oriented Programming	2	0	2	3	100
6	21BTAE251	Material Engineering and Aerospace Materials	2	0	0	Audit	-
7	21BTME205	Design Thinking Part II	0	0	2	1	50
8	21BTAE211	Engineering Mechanics Laboratory	0	0	2	1	50
9	21SHD002	SHD (English Communication)	1	0	2	2	-
10	21SHD003	SHD (Health Practice 2)	0	0	2	1	-
		Total	15	1	16	22	650

Semester III

Course	Course Name	Hours/week					Maximum Marks			
Code	Course Maine	Lecture	Tutorial	Practical	Credits	CA	FE	Total		
21BTAE301	Machines and Mechanisms	3	0	0	3	40	60	100		
21BTAE302	Introduction to Aerospace Engineering	3	0	0	3	40	60	100		
21BTAE303	Fluid Mechanics	3	0	0	3	40	60	100		
21BTAS304	Linear Differential Equations and Complex Variables	3	1	0	4	40	60	100		
21BTAE305	Strength of Materials	3	0	2	4	40	60	100		
21BTAE311	Fluid Mechanics Laboratory	0	0	2	1	40	60	100		
21BTAE312	TAE312 Machines & Mechanisms Laboratory		0	2	1	40	60	100		
21BTAE313	CADD Laboratory	1	0	4	3	40	60	100		
	16	1	10	22	320	480	800			

Semester	IV
----------	----

Course	Course Name		Hour	s/week		Maximum Marks			
Code	Course Maine	Lecture	Tutorial	Practical	Credits	CA	FE	Total	
21BTAE401	Numerical Methods	3	0	2	4	40	60	100	
21BTAE402	Heat Transfer	4	0	0	4	40	60	100	
21BTAE403	Manufacturing Technology	3	0	2	4	40	60	100	
21BTAE404	Aerodynamics	4	0	0	4	40	60	100	
21BTAE405	Electronics and Instrumentation	3	0	0	3	40	60	100	
21BTAE411	Thermal Engineering Laboratory	0	0	2	1	40	60	100	
21BTAE412	Aerodynamics Laboratory	0	0	2	1	40	60	100	
21BTAE413 Electronics & Instrumentation Laboratory		0	0	2	1	40	60	100	
	Total	17	0	10	22	320	480	800	

SEMESTER-V

Course	Course Name		Hours		Maximum Marks			
Code	Course Manie	Lecture	Tutorial	Practical	Credits	CA	FE	Total
21BTAE501	Aircraft Flight Mechanics	3	0	2	4	40	60	100
21BTAE502	Aircraft Structures-I	4	0	0	4	40	60	100
21BTAE503	Propulsion-II	4	0	0	4	40	60	100
21BTAE504	Gas Dynamics	4	0	0	4	40	60	100
21BTAE505	Control Theory	4	0	0	4	40	60	100
21BTAE511	Aircraft Structures Laboratory	0	0	2	1	40	60	100
21BTAE512	Propulsion- II Laboratory	0	0	2	1	40	60	100
21BTAE513	Control Theory Laboratory	0	0	2	1	40	60	100
	Total	19	0	8	23	320	480	800

Semester VI

Course	Course Name	Hours/week					Maximum Marks			
Code	Course Maine	Lecture	Tutorial	Practical	Credits	CA	FE	Total		
21BTAE601	Aircraft Structures -II	4	0	0	4	40	60	100		
21BTAE602	Avionics	3	0	0	3	40	60	100		
21BTAE603	Computational Fluid Dynamics	3	0	0	3	40	60	100		
21BTAE604	Rocket Propulsion	3	1	0	4	40	60	100		
21BTAE605	Economics and Management for Engineers	3	0	0	3	40	60	100		
21BTAE606	Introduction to Unmanned Air Vehicles	1	0	2	2	100		100		
21BTAE611	Avionics Laboratory	0	0	2	1	40	60	100		
21BTAE612	Computational Laboratory	0	0	2	1	40	60	100		
21BTAE620	Mini Project	0	0	4	2	100		100		
	Total			10	23	480	420	900		

SEMESTER-VII

Course	Course Name		Hours		Maximum Marks			
Code	Course Maine	Lecture	Tutorial	Practical	Credits	CA	FE	Total
21BTAE701	Space Flight Mechanics	3	1	0	4	40	60	100
21BTAE702	Vibrations and Aero- elasticity	3	0	0	3	40	60	100
21BTAE703	Aircraft Design	3	0	0	3	40	60	100
21BTAE	Elective-I	3	0	0	3	40	60	100
21BTAE	Elective-II	3	0	0	3	40	60	100
21BTAE711	Aircraft Design Laboratory	0	0	2	1	40	60	100
21BTAE712	Vibrations & Aero- elasticity Laboratory	0	0	2	1	40	60	100
21BTAE720	Project Phase-I	0	0	6	3	100		100
21BTAE720	Scientific Communication and Writing Skills	2	0	0	0 (Audit)			
Total		15	1	12	21	380	420	800

SEMESTER-VIII

Course	Course Name		Hours/week				Maximum Marks		
Code	Course Maine	Lecture	Tutorial	Practical	Credits	CA	FE	Total	
21BTAE	Elective-III (Online Course)	3	0	0	3	40	60	100	
21BTAE851	Environmental Studies	2	0	0	0 (Audit)				
21BTAE821	Project Phase-II	0	0	24	12	100	200	300	
Total		3	0	24	15	140	260	400	

Electives

Elective		Course Name
	21BTAE731	Finite Element Analysis
	21BTAE732	Experimental Aerodynamics
Elective-I	21BTAE733	Optimization
Lieetive 1	21BTAE734	Operations Research
	21BTAE735	Fundamentals of Combustion
	21BTAE736	Total Quality Management
	21BTAE737	Lighter than Air Systems
	21BTAE738	Introduction to Composite Materials & Structures
Elective-II	21BTAE739	Supply Chain Management
Licenve II	21BTAE740	Machine Learning
	21BTAE741	Aircraft Maintenance and Repair
	21BTAE742	Reliability Engineering
	21BTAE831	Advanced Manufacturing Processes
Elective-III	21BTAE832	Aircraft Systems
	21BTAE833	Spacecraft Dynamics and Control
	21BTAE834	Aircraft Control