**School of Engineering** 



Programme Curriculum

# **BACHELOR OF TECHNOLOGY**

### **PATTERN 2021**

# **Mechanical Engineering**

**Faculty of Engineering** 





MIT ART DESIGN & TECHNOLOGY UNIVERSITY, PUNE

# MIT SCHOOL OF ENGINEERING PUNE

**STRUCTURE & SYLLABUS** 

FOR

# Bachelor of Technology Mechanical Engineering

UNDER FACULTY OF ENGINNERING

4 Year Under Graduate Programme sanctioned by AC & BoS

(w.e.f. 2021-2022)

(160 CREDITS)

**Department of Mechanical Engineering** 



### **VISION**

To develop globally competent multi-faceted Mechanical Engineers by nurturing moral and ethical values.

### **MISSION**

- 1. To provide a conducive academic environment through effective teaching-learning and research culture.
- 2. To develop world-class mechanical engineers to cater diverse needs of the society by imparting application oriented engineering knowledge and providing academia-industry interaction.
- 3. To emphasize the importance of ethics and morals by creating awareness and persistent practices.



### **Program Educational Objectives (PEO's) – Mechanical Engineering**

- **1. PEO-1:** Graduates of the program will become competent Engineers suitable for core industries and higher education.
- **2. PEO-2:** Graduates of the program will acquire the necessary foundation for development of mathematical analytical abilities.
- **3. PEO-3:** Graduates of the program will acquire the knowledge and skills to provide sustainable solutions to social problems through Innovations and Entrepreneurship.
- **4. PEO-4:** Graduates of the program will learn managerial, financial and ethical practices such as, project and financial management skills, multidisciplinary approach and soft skills.
- **5. PEO-5:** Graduates of the program will cater to the need of growing demands of market through lifelong learning approach.



### **Program Outcomes as defined by NBA (PO)**

#### **Engineering Graduates will be able to:**

- **1. PO1 Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. PO2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3. PO3 Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. PO4 Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. PO5 Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. PO6 The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **PO7 Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. PO8 Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

Rajbaug, Next to Hadapsar, Loni Kalbhor, Pune - 412201, MS, India.

Contact: +919021080109 | Email: hod.mechanical.mitsoe@mituniversity.edu.in | www.mituniversity.ac.in

## School of Engineering, Pune Department of Mechanical Engineering



- **9. PO9 Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. PO10 Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. PO11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. PO12 Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### **Program Specific Outcomes (PSO) – Mechanical Engineering**

The program is expected to deliver at the time of graduation:

- **1. PSO-1:** Ability to design & analyse components & systems for mechanical performance.
- 2. **PSO-2:** Ability to apply and solve the problems of heat power and thermal systems.
- **3. PSO-3:** Ability to solve real life problems with the exposure to manufacturing industries.

#### **B. Tech. (Mechanical Engineering)**

#### (2021 Regulations)

#### (Credits: 168)

| SEMESTER I     |                                                              |             |              |               |             |               |               |           |  |
|----------------|--------------------------------------------------------------|-------------|--------------|---------------|-------------|---------------|---------------|-----------|--|
| Course<br>Code | Course Name                                                  | Hours/week  |              |               |             | Maximum Marks |               |           |  |
|                |                                                              | Lectu       | Tuto         | Prac          | Cred        | CA            | FE            | Tot       |  |
|                |                                                              | re          | rial         | tical         | its         | CA            |               | al        |  |
| 21BTAS102      | Linear Algebra and Calculus                                  | 3           | 1            | 0             | 4           | 40            | 60            | 100       |  |
| 21BTCS101      | Programming for Problem Solving                              | 2           | 0            | 4             | 4           | (40+50P)      | 60            | 150       |  |
| 21BTME001      | Engineering Graphics                                         | 1           | 0            | 4             | 3           | 40            | 60            | 100       |  |
| 21BTIC003      | Engineering Workshop                                         | 0           | 0            | 4             | 2           | 50            | 0             | 50        |  |
| 21BTAS104      | English communication for Engineers                          | 2           | 0            | 2             | 3           | 40            | 60            | 100       |  |
| 21BTUC101      | Design Thinking Part I                                       | 1           | 0            | 2             | 2           | 50            | -             | 50        |  |
| 18UCCS102      | SHD (Health Practice I)                                      | 0           | 0            | 2             | 1           |               |               |           |  |
| Total          |                                                              | 9           | 1            | 18            | 19          | 310           | 240           | 550       |  |
| SEMESTER II    |                                                              |             |              |               |             |               |               |           |  |
| Course<br>Code | Course Name                                                  | Hours/week  |              |               |             | Maximu        | Maximum Marks |           |  |
|                |                                                              | Lectu<br>re | Tuto<br>rial | Prac<br>tical | Cred<br>its | СА            | FE            | Tot<br>al |  |
| 21BTAS203      | Ordinary Differential<br>Equations and Advanced<br>Calculus  | 3           | 1            | 0             | 4           | 40            | 60            | 100       |  |
| 21BTCS202      | Object Oriented<br>Programming                               | 2           | 0            | 2             | 3           | 40            | 60            | 100       |  |
| 21BTEC001      | Basics of Electrical and<br>Electronics Engineering          | 3           | 0            | 2             | 4           | (40+50P)      | 60            | 150       |  |
| 21BTAS001      | Applied Sciences                                             | 4           | 0            | 2             | 5           | (40+50P)      | 60            | 150       |  |
| 21BTME202      | Engineering Mechanics                                        | 3           | 0            | 2             | 4           | (40+50P)      | 60            | 150       |  |
| 21BTUC201      | Design Thinking Part II                                      | 1           | 0            | 2             | 2           | 50            | -             | 50        |  |
| 18UCCS201      | SHD (Professional English<br>communication for<br>Engineers) | 1           | 0            | 2             | 2           |               |               |           |  |
| 18UCCS202      | SHD (Health Practice 2)                                      | 0           | 0            | 2             | 1           |               |               |           |  |
| Total          |                                                              | 17          | 1            | 14            | 25          | 400           | 300           | 700       |  |

**B. Tech.(Mechanical Engineering)** 

2021-22pattern

| SEMESTER III |                            |                          |          |          |              |     |       |       |
|--------------|----------------------------|--------------------------|----------|----------|--------------|-----|-------|-------|
| Course Code  | Course Name                | Hours/week Maximum Marks |          |          |              |     | Iarks |       |
|              |                            | Lectur                   | Tutorial | Practica | Credit       | CA  | FE    | Total |
|              |                            | е                        |          | 1        | S            |     |       |       |
| 21BTME301    | Thermodynamics             | 3                        | 0        | 0        | 3            | 40  | 60    | 100   |
| 21BTMT302    | Differential Equations and | 3                        | 1        | 0        | 4            | 40  | 60    | 100   |
|              | Transform Techniques       |                          |          |          |              |     |       |       |
| 21BTME303    | Mechanics of Solid         | 3                        | 1        | 0        | 4            | 40  | 60    | 100   |
| 21BTME304    | Manufacturing Processes    | 3                        | 0        | 2        | 4            | 40  | 60    | 100   |
| 21BTME305    | Engineering Metallurgy     | 3                        | 0        | 2        | 4            | 40  | 60    | 100   |
| 21BTME311    | Thermodynamics Lab         | 0                        | 0        | 2        | 1            | 40  | 60    | 100   |
| 21BTME312    | Geometric Modeling Lab     | 0                        | 0        | 2        | 1            | 25  | 25    | 50    |
| 21BTME321    | Mini Project-I             | 0                        | 0        | 4        | 2            | 100 |       | 100   |
| Total        |                            | 15                       | 2        | 12       | 23           | 365 | 385   | 750   |
| SEMESTER IV  |                            |                          |          |          |              |     |       |       |
| 21BTME401    | Applied Thermodynamics     | 3                        | 0        | 0        | 3            | 40  | 60    | 100   |
| 21BTME402    | Fluid Mechanics            | 3                        | 0        | 0        | 3            | 40  | 60    | 100   |
| 21BTME403    | Advanced Manufacturing     | 3                        | 1        | 0        | 4            | 40  | 60    | 100   |
|              | Processes and Tooling      |                          |          |          |              |     |       |       |
| 21BTME404    | Theory of Machines-I       | 3                        | 0        | 2        | 4            | 40  | 60    | 100   |
| 21BTME405    | Electrical Machines        | 3                        | 1        | 0        | 4            | 40  | 60    | 100   |
| 21BTME406    | Environmental Studies      | 2                        | 0        | 0        | Audit Course |     |       |       |
| 21BTME411    | Applied Thermodynamics     | 0                        | 0        | 2        | 1            | 25  | 50    | 75    |
|              | Lab                        |                          |          |          |              |     |       |       |
| 21BTME412    | Fluid Mechanics Lab        | 0                        | 0        | 2        | 1            | 25  | 50    | 75    |
| 21BTME421    | Mini Project-II            | 0                        | 0        | 4        | 2            | 100 |       | 100   |
| Total        |                            | 15                       | 2        | 10       | 22           | 350 | 400   | 750   |

| SEMESTER V  |                           |            |          |          |        |     |               |       |  |
|-------------|---------------------------|------------|----------|----------|--------|-----|---------------|-------|--|
| Course Code | Course Name               | Hours/week |          |          |        |     | Maximum Marks |       |  |
|             |                           | Lectur     | Tutorial | Practica | Credit | CA  | FE            | Total |  |
|             |                           | e          |          | 1        | S      |     |               |       |  |
| 21BTME501   | Heat Transfer             | 3          | 0        | 0        | 3      | 40  | 60            | 100   |  |
| 21BTME502   | Computational Methods &   | 3          | 0        | 2        | 4      | 40  | 60            | 100   |  |
|             | Data Analytics            |            |          |          |        |     |               |       |  |
| 21BTME503   | Design of Machine         | 3          | 0        | 2        | 4      | 40  | 60            | 100   |  |
|             | Elements -I               |            |          |          |        |     |               |       |  |
| 21BTME504   | Financial Management      | 3          | 0        | 0        | 3      | 40  | 60            | 100   |  |
| 21BTME505   | Theory of Machines-II     | 3          | 0        | 0        | 3      | 40  | 60            | 100   |  |
| 21BTME511   | Heat Transfer Lab         | 0          | 0        | 2        | 1      | 40  | 60            | 100   |  |
| 21BTME512   | Theory of Machines-II Lab | 0          | 0        | 2        | 1      | 40  | 60            | 100   |  |
| 21BTME521   | Mini Project –III         | 0          | 0        | 4        | 2      | 100 |               | 100   |  |
| Total       |                           | 15         | 0        | 12       | 21     | 380 | 420           | 800   |  |
|             |                           | SEME       | STER VI  |          |        |     |               | •     |  |
| 21BTME601   | Turbo Machines            | 3          | 0        | 2        | 4      | 40  | 60            | 100   |  |
| 21BTME602   | Design of Machine         | 3          | 0        | 0        | 3      | 40  | 60            | 100   |  |
|             | Elements - II             |            |          |          |        |     |               |       |  |
| 21BTME603   | Metrology and Quality     | 3          | 0        | 2        | 4      | 40  | 60            | 100   |  |
|             | Control                   |            |          |          |        |     |               |       |  |
| 21BTME604   | Refrigeration and Air     | 3          | 0        | 0        | 3      | 40  | 60            | 100   |  |
|             | Conditioning              |            |          |          |        |     |               |       |  |
| 21BTME      | Elective-I                | 3          | 1        | 0        | 4      | 40  | 60            | 100   |  |
| 21BTME611   | Design of Machine         | 0          | 0        | 2        | 1      | 40  | 60            | 100   |  |
|             | Elements – II Lab         |            |          |          |        |     |               |       |  |
| 21BTME612   | Refrigeration and Air     | 0          | 0        | 2        | 1      | 40  | 60            | 100   |  |
|             | Conditioning Lab          |            |          |          |        |     |               |       |  |
| 21BTME621   | Mini Project-IV           | 0          | 0        | 4        | 2      | 100 |               | 100   |  |
| Total       |                           | 15         | 1        | 12       | 22     | 380 | 420           | 800   |  |

| SEMESTER VII  |                           |                          |          |          |        |     |       |       |
|---------------|---------------------------|--------------------------|----------|----------|--------|-----|-------|-------|
| Course Code   | Course Name               | Hours/week Maximum Marks |          |          |        |     | Iarks |       |
|               |                           | Lectur                   | Tutorial | Practica | Credit | CA  | FE    | Total |
|               |                           | е                        |          | 1        | S      |     |       |       |
| 21BTME701     | Mechanical System Design  | 3                        | 0        | 2        | 4      | 40  | 60    | 100   |
| 21BTME702     | Power Plant               | 3                        | 0        | 0        | 3      | 40  | 60    | 100   |
| 21BTME703     | Mechanical Vibrations     | 3                        | 0        | 0        | 3      | 40  | 60    | 100   |
| 21BTME        | Elective-II               | 3                        | 1        | 0        | 4      | 40  | 60    | 100   |
| 21BTME        | Elective-III              | 3                        | 0        | 0        | 3      | 40  | 60    | 100   |
| 21BTME711     | Power Plant Lab           | 0                        | 0        | 2        | 1      | 40  | 60    | 100   |
| 21BTME712     | Mechanical Vibrations Lab | 0                        | 0        | 2        | 1      | 40  | 60    | 100   |
| 21BTME721     | Project Phase-I           | 0                        | 0        | 4        | 2      | 100 |       | 100   |
| Total         |                           | 15                       | 1        | 10       | 21     | 380 | 420   | 800   |
| SEMESTER VIII |                           |                          |          |          |        |     |       |       |
| 21BTME        | Open Elective             | 3                        | 0        | 0        | 3      | 40  | 60    | 100   |
| 21BTME821     | Project Phase-II          | 0                        | 0        | 24       | 12     | 200 | 200   | 400   |
| Total         |                           | 3                        | 0        | 24       | 15     | 240 | 260   | 500   |

|               | Course Code | Course                          |  |  |  |  |
|---------------|-------------|---------------------------------|--|--|--|--|
| Elective-I    | 21BTME631   | Artificial Intelligence         |  |  |  |  |
|               | 21BTME632   | Hydraulics and Pneumatics       |  |  |  |  |
|               | 21BTME633   | Non-Conventional Energy sources |  |  |  |  |
|               | 21BTME634   | Production Planning Control     |  |  |  |  |
|               | 21BTME635   | Finite Element Method           |  |  |  |  |
|               | 21BTME636   | Enterprise Resource Planning    |  |  |  |  |
|               | 21BTME731   | Machine Learning                |  |  |  |  |
|               | 21BTME732   | Mechatronics System             |  |  |  |  |
|               | 21BTME733   | Energy Audit and Management     |  |  |  |  |
| Elective-II   | 21BTME734   | Machine Tool Design             |  |  |  |  |
|               | 21BTME735   | CAD/CAM                         |  |  |  |  |
|               | 21BTME736   | Cryogenic engineering           |  |  |  |  |
|               | 21BTME737   | Reliability Engineering         |  |  |  |  |
|               | 21BTME738   | Robotics & Automation           |  |  |  |  |
|               | 21BTME739   | Computational Fluid Dynamics    |  |  |  |  |
| Flective-III  | 21BTME740   | Automobile Engineering          |  |  |  |  |
| Elective-m    | 21BTME741   | Product Design and Development  |  |  |  |  |
|               | 21BTME742   | Supply Chain Management         |  |  |  |  |
|               | 21BTME743   | Operations Research             |  |  |  |  |
|               | 21BTME831   | Digital Manufacturing           |  |  |  |  |
| Open Elective | 21BTME832   | Entrepreneurship                |  |  |  |  |
|               | 18BTMA833   | Autotronics                     |  |  |  |  |

#### **ELECTIVES**

**BoS** Chairman HoD Mechanical Engg. Dept.

Sachdes Dean

DEAN- Engineering MIT School of Engineering MIT ADT UNIVERSITY, Pune

**B. Tech Mechanical Engineering** 

2021-22 pattern

5